Problem A. 15

In the usual basis $(\hat{i}, \hat{j}, \hat{k})$, construct the matrix T_{x} representing a rotation through angle θ about the x axis, and the matrix T_{y} representing a rotation through angle θ about the y axis. Suppose now we change bases, to $\hat{i}^{\prime}=\hat{j}, \hat{j}^{\prime}=-\hat{i}, \hat{k}^{\prime}=\hat{k}$. Construct the matrix S that effects this change of basis, and check that $\mathrm{ST}_{x} \mathrm{~S}^{-1}$ and $\mathrm{ST}_{y} \mathrm{~S}^{-1}$ are what you would expect.

Solution

The goal is to find T_{x} and T_{y}, the matrices representing the prescribed linear transformations with respect to the standard basis. (See Equation A. 42 on page 470.)

$$
\begin{equation*}
\mathrm{a}^{\prime}=\mathrm{Ta} \tag{A.42}
\end{equation*}
$$

To find T_{x}, draw an $x y z$-coordinate system, looking at the origin from the positive x-axis.

A counterclockwise rotation about the x-axis of angle θ results in the axes as shown on the right. The new unit vectors are expressed in terms of the old ones as follows.

$$
\left\{\begin{array}{l}
\hat{i}^{\prime}=\hat{i} \\
\hat{j}^{\prime}=\cos \theta \hat{j}+\sin \theta \hat{k} \\
\hat{k}^{\prime}=-\sin \theta \hat{j}+\cos \theta \hat{k}
\end{array} \quad \Rightarrow\left[\begin{array}{c}
\hat{i}^{\prime} \\
\hat{j}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right]\right.
$$

Therefore,

$$
\mathbf{T}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right] .
$$

To find T_{y}, draw an $x y z$-coordinate system, looking at the origin from the positive y-axis.

A counterclockwise rotation about the y-axis of angle θ results in the axes as shown on the right. The new unit vectors are expressed in terms of the old ones as follows.

$$
\left\{\begin{array}{l}
\hat{i}^{\prime}=\cos \theta \hat{i}-\sin \theta \hat{k} \\
\hat{j}^{\prime}=\hat{j} \\
\hat{k}^{\prime}=\sin \theta \hat{i}+\cos \theta \hat{k}
\end{array} \Rightarrow\left[\begin{array}{c}
\hat{i^{\prime}} \\
\hat{j}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right]\right.
$$

Therefore,

$$
\mathrm{T}_{y}=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] .
$$

Equation A. 63 on page 474 gives the formula for a change of basis.

$$
\begin{equation*}
a^{f}=S a^{e} \tag{A.63}
\end{equation*}
$$

The prescribed change of basis is

$$
\left\{\begin{array}{l}
\hat{i}^{\prime}=\hat{j} \\
\hat{j}^{\prime}=-\hat{i} \\
\hat{k}^{\prime}=\hat{k}
\end{array} \quad \Rightarrow\left[\begin{array}{l}
\hat{i}^{\prime} \\
\hat{j}^{\prime} \\
\hat{k}^{\prime}
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j} \\
\hat{k}
\end{array}\right] .\right.
$$

Therefore,

$$
\mathbf{S}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

which means

$$
S^{-1}=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now calculate $\mathrm{ST}_{x} \mathrm{~S}^{-1}$ and $\mathrm{ST}_{y} \mathrm{~S}^{-1}$.

$$
\begin{aligned}
& \mathrm{ST}_{x} \mathrm{~S}^{-1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]=\mathbf{T}_{y}(-\theta) \\
& \mathrm{ST}_{y} \mathrm{~S}^{-1}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right]=\mathbf{T}_{x}(\theta)
\end{aligned}
$$

The first equation says that making a counterclockwise rotation of θ about the x-axis is the same as making a clockwise rotation of θ about the y^{\prime} axis. This is true because the y^{\prime}-axis is the negative x-axis $\left(\hat{j}^{\prime}=-\hat{i}\right)$.

The second equation says that making a counterclockwise rotation of θ about the y-axis is the same as making a counterclockwise rotation of θ about the x^{\prime} axis. This is true because the x^{\prime}-axis is the y-axis ($\hat{i}^{\prime}=\hat{j}$).

