Problem A.15

In the usual basis $(\hat{i}, \hat{j}, \hat{k})$, construct the matrix T_x representing a rotation through angle θ about the *x* axis, and the matrix T_y representing a rotation through angle θ about the *y* axis. Suppose now we change bases, to $\hat{i}' = \hat{j}, \hat{j}' = -\hat{i}, \hat{k}' = \hat{k}$. Construct the matrix S that effects this change of basis, and check that $\mathsf{ST}_x \mathsf{S}^{-1}$ and $\mathsf{ST}_y \mathsf{S}^{-1}$ are what you would expect.

Solution

The goal is to find T_x and T_y , the matrices representing the prescribed linear transformations with respect to the standard basis. (See Equation A.42 on page 470.)

$$\mathsf{a}' = \mathsf{T}\mathsf{a} \tag{A.42}$$

To find T_x , draw an xyz-coordinate system, looking at the origin from the positive x-axis.

A counterclockwise rotation about the x-axis of angle θ results in the axes as shown on the right. The new unit vectors are expressed in terms of the old ones as follows.

$$\begin{cases} \hat{i}' = \hat{i} \\ \hat{j}' = \cos\theta \,\hat{j} + \sin\theta \,\hat{k} \\ \hat{k}' = -\sin\theta \,\hat{j} + \cos\theta \,\hat{k} \end{cases} \qquad \begin{bmatrix} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

Therefore,

	1	0	0	
$T_x =$	0	$\cos \theta$	$\sin \theta$	
	0	$-\sin\theta$	$\cos \theta$	

To find T_y , draw an xyz-coordinate system, looking at the origin from the positive y-axis.

A counterclockwise rotation about the y-axis of angle θ results in the axes as shown on the right. The new unit vectors are expressed in terms of the old ones as follows.

$$\begin{cases} \hat{i}' = \cos\theta \,\hat{i} - \sin\theta \,\hat{k} \\ \hat{j}' = \hat{j} \\ \hat{k}' = \sin\theta \,\hat{i} + \cos\theta \,\hat{k} \end{cases} \Rightarrow \begin{bmatrix} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

Therefore,

	$\cos \theta$	0	$-\sin\theta$	
$T_y =$	0	1	0	
	$\sin \theta$	0	$\cos heta$	

Equation A.63 on page 474 gives the formula for a change of basis.

$$\mathsf{a}^f = \mathsf{S}\mathsf{a}^e \tag{A.63}$$

The prescribed change of basis is

$$\begin{cases} \hat{i}' = \hat{j} \\ \hat{j}' = -\hat{i} \\ \hat{k}' = \hat{k} \end{cases} \Rightarrow \begin{bmatrix} \hat{i}' \\ \hat{j}' \\ \hat{k}' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}.$$

Therefore,

which means

$$S = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$S^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

.

Now calculate $\mathsf{ST}_x\mathsf{S}^{-1}$ and $\mathsf{ST}_y\mathsf{S}^{-1}.$

$$ST_{x}S^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} = T_{y}(-\theta)$$
$$ST_{y}S^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix} = T_{x}(\theta)$$

The first equation says that making a counterclockwise rotation of θ about the x-axis is the same as making a clockwise rotation of θ about the y' axis. This is true because the y'-axis is the negative x-axis $(\hat{j}' = -\hat{i})$.

The second equation says that making a counterclockwise rotation of θ about the *y*-axis is the same as making a counterclockwise rotation of θ about the x' axis. This is true because the x'-axis is the *y*-axis ($\hat{i}' = \hat{j}$).